Selection of the order of autoregressive models for spectral analysis of noise corrupted signals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F17%3A39921589" target="_blank" >RIV/00216275:25530/17:39921589 - isvavai.cz</a>
Result on the web
<a href="https://www.science-gate.com/IJAAS/V4I12/Jakub.html" target="_blank" >https://www.science-gate.com/IJAAS/V4I12/Jakub.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21833/ijaas.2017.012.016" target="_blank" >10.21833/ijaas.2017.012.016</a>
Alternative languages
Result language
angličtina
Original language name
Selection of the order of autoregressive models for spectral analysis of noise corrupted signals
Original language description
This paper presents the theoretical basis of autoregressive (AR) modelling in spectral analysis. Autoregressive modelling includes a model identification procedure based on an autocorrelation function (ACF) of the incoming signal and its statistical evaluation. This is necessary to choose the best order of an AR model that best describes the given set of data. Spectral analysis gives information about the frequency content of a signal. The AR method is an alternative to discrete Fourier transform (DFT) in the computing of a power spectrum density function of a signal, but provides a smoother power spectral density then DFT. (C) 2017 The Authors. Published by IASE.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20200 - Electrical engineering, Electronic engineering, Information engineering
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Advanced and Applied Science
ISSN
2313-626X
e-ISSN
2313-3724
Volume of the periodical
4
Issue of the periodical within the volume
12
Country of publishing house
TW - TAIWAN (PROVINCE OF CHINA)
Number of pages
4
Pages from-to
79-82
UT code for WoS article
000418513600016
EID of the result in the Scopus database
—