All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Selection of the order of autoregressive models for spectral analysis of noise corrupted signals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F17%3A39921589" target="_blank" >RIV/00216275:25530/17:39921589 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.science-gate.com/IJAAS/V4I12/Jakub.html" target="_blank" >https://www.science-gate.com/IJAAS/V4I12/Jakub.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21833/ijaas.2017.012.016" target="_blank" >10.21833/ijaas.2017.012.016</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Selection of the order of autoregressive models for spectral analysis of noise corrupted signals

  • Original language description

    This paper presents the theoretical basis of autoregressive (AR) modelling in spectral analysis. Autoregressive modelling includes a model identification procedure based on an autocorrelation function (ACF) of the incoming signal and its statistical evaluation. This is necessary to choose the best order of an AR model that best describes the given set of data. Spectral analysis gives information about the frequency content of a signal. The AR method is an alternative to discrete Fourier transform (DFT) in the computing of a power spectrum density function of a signal, but provides a smoother power spectral density then DFT. (C) 2017 The Authors. Published by IASE.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20200 - Electrical engineering, Electronic engineering, Information engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Advanced and Applied Science

  • ISSN

    2313-626X

  • e-ISSN

    2313-3724

  • Volume of the periodical

    4

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    TW - TAIWAN (PROVINCE OF CHINA)

  • Number of pages

    4

  • Pages from-to

    79-82

  • UT code for WoS article

    000418513600016

  • EID of the result in the Scopus database