All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural Networks Application for Processing of the Data from the FMICW Radars

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F19%3A39914421" target="_blank" >RIV/00216275:25530/19:39914421 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-8994/11/10/1308/pdf" target="_blank" >https://www.mdpi.com/2073-8994/11/10/1308/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/sym11101308" target="_blank" >10.3390/sym11101308</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural Networks Application for Processing of the Data from the FMICW Radars

  • Original language description

    In this paper the results of the Neural Networks and machine learning applications for radar signal processing are presented. The radar output from the primary radar signal processing is represented as a 2D image composed from echoes of the targets and noise background. The Frequency Modulated Interrupted ContinuousWave (FMICW) radar PCDR35 (Portable Cloud Doppler Radar at the frequency 35.4 GHz) was used. Presently, the processing is realized via a National Instruments industrial computer. The neural network of the proposed system is using four or five (optional for the user) signal processing steps. These steps are 2D spectrum filtration, thresholding, unification of the target, target area transforming to the rectangular shape (optional step), and target board line detection. The proposed neural network was tested with sets of four cases (100 tests for every case). This neural network provides image processing of the 2D spectrum. The results obtained from this new system are much better than the results of our previous algorithm.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Symmetry

  • ISSN

    2073-8994

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    1-15

  • UT code for WoS article

    000495457600122

  • EID of the result in the Scopus database