Singularity subtraction in a multidimensional Fredholm integral equation of the second kind with a singular kernel
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F19%3A39915665" target="_blank" >RIV/00216275:25530/19:39915665 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.5114512" target="_blank" >http://dx.doi.org/10.1063/1.5114512</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5114512" target="_blank" >10.1063/1.5114512</a>
Alternative languages
Result language
angličtina
Original language name
Singularity subtraction in a multidimensional Fredholm integral equation of the second kind with a singular kernel
Original language description
A numerical solution of the Fredholm integral equations can be obtained by many methods. Most of them lead to a solution of a system of linear equations with fully populated matrices. In the case of collocation or product integration methods, each element of the matrix is an integral, which needs to be calculated. It causes high computing time in multidimensional problems. Computing time can be reduced by the Nyström method. It is based on substitution of the integral by a numerical integration rule. It has the advantage that only diagonal elements of the matrix are integrals. When the kernel function is singular, a singularity subtraction is needed. However it can not be used for every kernel function and every integration rule. The main point of this paper is the convergence conditions of the Nyström method as applied to a special multidimensional integral equation. The paper includes an illustrative example.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings. Vol. 2116
ISBN
978-0-7354-1854-7
ISSN
0094-243X
e-ISSN
—
Number of pages
4
Pages from-to
1-4
Publisher name
American Institute of Physics
Place of publication
Melville
Event location
Rhodos
Event date
Sep 13, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—