All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Pokročilé metody pro zpracování a zjednodušení cloudu bodů

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F20%3A39917254" target="_blank" >RIV/00216275:25530/20:39917254 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2076-3417/10/10/3340/pdf" target="_blank" >https://www.mdpi.com/2076-3417/10/10/3340/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app10103340" target="_blank" >10.3390/app10103340</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Pokročilé metody pro zpracování a zjednodušení cloudu bodů

  • Original language description

    Nowadays, mobile robot exploration needs a rangefinder to obtain a large number of measurement points to achieve a detailed and precise description of a surrounding area and objects, which is called the point cloud. However, a single point cloud scan does not cover the whole area, so multiple point cloud scans must be acquired and compared together to find the right matching between them in a process called registration method. This method requires further processing and places high demands on memory consumption, especially for small embedded devices in mobile robots. This paper describes a novel method to reduce the burden of processing for multiple point cloud scans. We introduce our approach to preprocess an input point cloud in order to detect planar surfaces, simplify space description, fill gaps in point clouds, and get important space features. All of these processes are achieved by applying advanced image processing methods in combination with the quantization of physical space points. The results show the reliability of our approach to detect close parallel walls with suitable parameter settings. More importantly, planar surface detection shows a 99% decrease in necessary descriptive points almost in all cases. This proposed approach is verified on the real indoor point clouds.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

  • Continuities

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Science - Basel

  • ISSN

    2076-3417

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    26

  • Pages from-to

  • UT code for WoS article

    000541440000001

  • EID of the result in the Scopus database