Pokročilé metody pro zpracování a zjednodušení cloudu bodů
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F20%3A39917254" target="_blank" >RIV/00216275:25530/20:39917254 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2076-3417/10/10/3340/pdf" target="_blank" >https://www.mdpi.com/2076-3417/10/10/3340/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app10103340" target="_blank" >10.3390/app10103340</a>
Alternative languages
Result language
angličtina
Original language name
Pokročilé metody pro zpracování a zjednodušení cloudu bodů
Original language description
Nowadays, mobile robot exploration needs a rangefinder to obtain a large number of measurement points to achieve a detailed and precise description of a surrounding area and objects, which is called the point cloud. However, a single point cloud scan does not cover the whole area, so multiple point cloud scans must be acquired and compared together to find the right matching between them in a process called registration method. This method requires further processing and places high demands on memory consumption, especially for small embedded devices in mobile robots. This paper describes a novel method to reduce the burden of processing for multiple point cloud scans. We introduce our approach to preprocess an input point cloud in order to detect planar surfaces, simplify space description, fill gaps in point clouds, and get important space features. All of these processes are achieved by applying advanced image processing methods in combination with the quantization of physical space points. The results show the reliability of our approach to detect close parallel walls with suitable parameter settings. More importantly, planar surface detection shows a 99% decrease in necessary descriptive points almost in all cases. This proposed approach is verified on the real indoor point clouds.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20204 - Robotics and automatic control
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Science - Basel
ISSN
2076-3417
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
10
Country of publishing house
CH - SWITZERLAND
Number of pages
26
Pages from-to
—
UT code for WoS article
000541440000001
EID of the result in the Scopus database
—