The Duality of Similarity and Metric Spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F21%3A39918024" target="_blank" >RIV/00216275:25530/21:39918024 - isvavai.cz</a>
Alternative codes found
RIV/60461373:22340/21:43923599
Result on the web
<a href="https://www.mdpi.com/2076-3417/11/4/1910" target="_blank" >https://www.mdpi.com/2076-3417/11/4/1910</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app11041910" target="_blank" >10.3390/app11041910</a>
Alternative languages
Result language
angličtina
Original language name
The Duality of Similarity and Metric Spaces
Original language description
We introduce a new mathematical basis for similarity space. For the first time, we describe the relationship between distance and similarity from set theory. Then, we derive generally valid relations for the conversion between similarity and a metric and vice versa. We present a general solution for the normalization of a given similarity space or metric space. The derived solutions lead to many already used similarity and distance functions, and combine them into a unified theory. The Jaccard coefficient, Tanimoto coefficient, Steinhaus distance, Ruzicka similarity, Gaussian similarity, edit distance and edit similarity satisfy this relationship, which verifies our fundamental theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED SCIENCES-BASEL
ISSN
2076-3417
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
18
Pages from-to
—
UT code for WoS article
000632122600001
EID of the result in the Scopus database
—