All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Grasping Point Detection Using Monocular Camera Image Processing and Knowledge of Center of Gravity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F22%3A39919571" target="_blank" >RIV/00216275:25530/22:39919571 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-09076-9_48" target="_blank" >http://dx.doi.org/10.1007/978-3-031-09076-9_48</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-09076-9_48" target="_blank" >10.1007/978-3-031-09076-9_48</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Grasping Point Detection Using Monocular Camera Image Processing and Knowledge of Center of Gravity

  • Original language description

    The ability to grasp objects is one of the basic functions of modern industrial robots. In this article, the focus is placed on a system for processing the image provided by a robot visual perception system leading to the detection of objects grasping points. The proposed processing system is based on a multi-step method using convolutional neural networks (CNN). The first step is to use the first CNN to transform the input image into a schematic image with labeled objects centers of gravity, which then serves as a supporting input to the second CNN. In this second CNN, original input and supporting input images are used to obtain a schematic image containing the grasping points of the objects. This solution is further compared with a network providing grasping points directly from the input image. As a result, the proposed method provided a 0.7% improvement in the average intersection over union for all of the models.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Cooperation in Applied Research between the University of Pardubice and companies, in the Field of Positioning, Detection and Simulation Technology for Transport Systems (PosiTrans)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Intelligence Trends in Systems : proceedings of 11th Computer science on-line conference 2022, Vol. 2

  • ISBN

    978-3-031-09075-2

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Number of pages

    11

  • Pages from-to

    531-541

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    ONLINE

  • Event date

    Apr 26, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000893642100048