All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-Scale Neural Model for Tool-Narayanaswamy-Moynihan Model Parameter Extraction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F23%3A39920965" target="_blank" >RIV/00216275:25530/23:39920965 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-42529-5_3" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-42529-5_3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-42529-5_3" target="_blank" >10.1007/978-3-031-42529-5_3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-Scale Neural Model for Tool-Narayanaswamy-Moynihan Model Parameter Extraction

  • Original language description

    Glass transitions are an important phenomenon in amor phous materials with potential for various applications. The Tool-Narayanaswamy-Moynihan (TNM) model is a widely used empirical model that describes the enthalpy relaxation behavior of these materials. However, determining the appropriate values for its parameters can be challeng ing. To address this issue, a multi-scale convolutional neural model is pro posed that can accurately predict the TNM parameters directly from the set of differential scanning calorimetry curves, experimentally measured using the sample of the considered amorphous material. The resulting Mean Absolute Error of the model over the test set is found to be 0.0252, indicating a high level of accuracy. Overall, the proposed neural model has the potential to become a valuable tool for practical application of the TNM model in the glass industry and related fields.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023) : proceedings, vol. 1

  • ISBN

    978-3-031-42528-8

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Number of pages

    10

  • Pages from-to

    24-33

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Salamanca

  • Event date

    Sep 5, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article