Comparison of Geospatial Trajectory Clustering and Feature Trajectory Clustering for Public Transportation Trip Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F23%3A39920967" target="_blank" >RIV/00216275:25530/23:39920967 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-40725-3_50" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-40725-3_50</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-40725-3_50" target="_blank" >10.1007/978-3-031-40725-3_50</a>
Alternative languages
Result language
angličtina
Original language name
Comparison of Geospatial Trajectory Clustering and Feature Trajectory Clustering for Public Transportation Trip Data
Original language description
One of the techniques for the analysis of travel patterns on a public transport network is the clustering of the users movements, in order to identify movement patterns. This paper analyses and compares two different methodologies for public transport trajectory clustering: feature clustering and geospatial trajectory clustering. The results of clustering trip features, such as origin, destination, or distance, are compared against the clustering of travelled trajectories by their geospatial characteristics. Algorithms based on density and hierarchical clustering are compared for both methodologies. In geospatial clustering, different metrics to measure distances between trajectories are included in the comparison. Results are evaluated by analysing their quality through the silhouette coefficient and graphical representations of the clusters on the map. The results show that geospatial trajectory clustering offers better quality than feature trajectory clustering. Also, in the case of long and complete trajectories, density clustering using edit distance with real penalty distance outperforms other combinations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Hybrid Artificial Intelligent Systems : 18th International Conference, HAIS 2023, proceedings
ISBN
978-3-031-40724-6
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
11
Pages from-to
589-599
Publisher name
Springer Nature Switzerland AG
Place of publication
Cham
Event location
Salamanca
Event date
Sep 5, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—