All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparison of Geospatial Trajectory Clustering and Feature Trajectory Clustering for Public Transportation Trip Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F23%3A39920967" target="_blank" >RIV/00216275:25530/23:39920967 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-40725-3_50" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-40725-3_50</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-40725-3_50" target="_blank" >10.1007/978-3-031-40725-3_50</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparison of Geospatial Trajectory Clustering and Feature Trajectory Clustering for Public Transportation Trip Data

  • Original language description

    One of the techniques for the analysis of travel patterns on a public transport network is the clustering of the users movements, in order to identify movement patterns. This paper analyses and compares two different methodologies for public transport trajectory clustering: feature clustering and geospatial trajectory clustering. The results of clustering trip features, such as origin, destination, or distance, are compared against the clustering of travelled trajectories by their geospatial characteristics. Algorithms based on density and hierarchical clustering are compared for both methodologies. In geospatial clustering, different metrics to measure distances between trajectories are included in the comparison. Results are evaluated by analysing their quality through the silhouette coefficient and graphical representations of the clusters on the map. The results show that geospatial trajectory clustering offers better quality than feature trajectory clustering. Also, in the case of long and complete trajectories, density clustering using edit distance with real penalty distance outperforms other combinations.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Hybrid Artificial Intelligent Systems : 18th International Conference, HAIS 2023, proceedings

  • ISBN

    978-3-031-40724-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    11

  • Pages from-to

    589-599

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Salamanca

  • Event date

    Sep 5, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article