All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ECG Hearbeat Classification Based on Multi-scale Convolutional Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F23%3A39920969" target="_blank" >RIV/00216275:25530/23:39920969 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-43078-7_29" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-43078-7_29</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-43078-7_29" target="_blank" >10.1007/978-3-031-43078-7_29</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ECG Hearbeat Classification Based on Multi-scale Convolutional Neural Networks

  • Original language description

    Clinical applications require automating ECG signal processing and classification. This paper investigates the impact of multiscale input filtering techniques and feature map blocks on the performance of CNN models for ECG classification. We conducted an ablation study using the AbnormalHeartbeat dataset, with 606 instances of ECG time series divided into five classes. We compared five multiscale input filtering techniques and four multiscale feature map blocks against a base model and non-multiscale input. Results showed that the combination of mean filter for multiscale input and residual connections for multiscale block achieved the highest accuracy of 64.47%. Residual connections were consistently effective across different filtering techniques, highlighting their potential to enhance CNN model performance for ECG classification. These findings can guide the design of future CNN models for ECG classification tasks, with further experimentation needed for optimal combinations in specific applications.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science

  • ISBN

    978-3-031-43077-0

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    352-363

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Ponta Delgada

  • Event date

    Jun 19, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article