ECG Hearbeat Classification Based on Multi-scale Convolutional Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F23%3A39920969" target="_blank" >RIV/00216275:25530/23:39920969 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-43078-7_29" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-43078-7_29</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-43078-7_29" target="_blank" >10.1007/978-3-031-43078-7_29</a>
Alternative languages
Result language
angličtina
Original language name
ECG Hearbeat Classification Based on Multi-scale Convolutional Neural Networks
Original language description
Clinical applications require automating ECG signal processing and classification. This paper investigates the impact of multiscale input filtering techniques and feature map blocks on the performance of CNN models for ECG classification. We conducted an ablation study using the AbnormalHeartbeat dataset, with 606 instances of ECG time series divided into five classes. We compared five multiscale input filtering techniques and four multiscale feature map blocks against a base model and non-multiscale input. Results showed that the combination of mean filter for multiscale input and residual connections for multiscale block achieved the highest accuracy of 64.47%. Residual connections were consistently effective across different filtering techniques, highlighting their potential to enhance CNN model performance for ECG classification. These findings can guide the design of future CNN models for ECG classification tasks, with further experimentation needed for optimal combinations in specific applications.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science
ISBN
978-3-031-43077-0
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
352-363
Publisher name
Springer Nature Switzerland AG
Place of publication
Cham
Event location
Ponta Delgada
Event date
Jun 19, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—