All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Survey of Point Cloud Registration Methods and New Statistical Approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F23%3A39921216" target="_blank" >RIV/00216275:25530/23:39921216 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/11/16/3564" target="_blank" >https://www.mdpi.com/2227-7390/11/16/3564</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math11163564" target="_blank" >10.3390/math11163564</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Survey of Point Cloud Registration Methods and New Statistical Approach

  • Original language description

    The use of a 3D range scanning device for autonomous object description or unknown environment mapping leads to the necessity of improving computer methods based on identical point pairs from different point clouds (so-called registration problem). The registration problem and three-dimensional transformation of coordinates still require further research. The paper attempts to guide the reader through the vast field of existing registration methods so that he can choose the appropriate approach for his particular problem. Furthermore, the article contains a regression method that enables the estimation of the covariance matrix of the transformation parameters and the calculation of the uncertainty of the estimated points. This makes it possible to extend existing registration methods with uncertainty estimates and to improve knowledge about the performed registration. The paper&apos;s primary purpose is to present a survey of known methods and basic estimation theory concepts for the point cloud registration problem. The focus will be on the guiding principles of the estimation theory: ICP algorithm; Normal Distribution Transform; Feature-based registration; Iterative dual correspondences; Probabilistic iterative correspondence method; Point-based registration; Quadratic patches; Likelihood-field matching; Conditional random fields; Branch-and-bound registration; PointReg. The secondary purpose of this article is to show an innovative statistical model for this transformation problem. The new theory needs known covariance matrices of identical point coordinates. An unknown rotation matrix and shift vector have been estimated using a nonlinear regression model with nonlinear constraints. The paper ends with a relevant numerical example.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

  • UT code for WoS article

    001056543900001

  • EID of the result in the Scopus database