Artificial neural network based inverse reliability analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F10%3APU90943" target="_blank" >RIV/00216305:26110/10:PU90943 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Artificial neural network based inverse reliability analysis
Original language description
An inverse reliability analysis is the problem to find design parameters corresponding to specified reliability levels expressed by reliability index or by theoretical failure probability. Design parameters can be deterministic or they can be associatedto random variables described by statistical moments. The aim is to solve generally not only the single design parameter case but also the multiple parameter problems with given multiple reliability constraints. A new general approach of inverse reliability analysis is proposed. The inverse analysis is based on the coupling of a stochastic simulation of Monte Carlo type and an artificial neural network. A novelty of the approach is the utilization of the efficient small-sample simulation method Latin Hypercube Sampling used for the stochastic preparation of the training set.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JM - Structural engineering
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/7D08004" target="_blank" >7D08004: Risk based Performance Prediction and Lifetime Assessment of Concrete Structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings in Applied Mathematics and Mechanics
ISSN
1617-7061
e-ISSN
—
Volume of the periodical
1
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
2
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—