All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F12%3APU97719" target="_blank" >RIV/00216305:26110/12:PU97719 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence

  • Original language description

    Schauder's fixed point technique is applied to asymptotical analysis of solutions of a linear Volterra difference equation $$ x(n+1)=a(n)+b(n)x(n)+sumlimits^{n}_{i=0}K(n,i)x(i) $$ where $nin bN_0$, $xcolonbN_0tobR$, $acolon bN_0tobR$, $KcolonbN_0timesbN_0to bR$, and $bcolonbN_0 to bRsetminus{0}$ is $omega$-periodic. In the paper, sufficient conditions are derived for the validity of a property of solutions that, for every admissible constant $cin bR$, there exists a solution$x=x(n)$ such that $$ {x(n){sim}}left(c+sumlimits_{i=0}^{n-1}frac{a(i)}{beta(i+1)}right)beta(n),$$ where $beta(n)=prodlimits_{j=0}^{n-1}b(j)$, for $ntoinfty$ and inequalities for solutions are derived. Relevant comparisons and illustrative examples are given as well.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Difference equations and dynamic equations on time scales III</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    APPLIED MATHEMATICS AND COMPUTATION

  • ISSN

    0096-3003

  • e-ISSN

  • Volume of the periodical

    2012

  • Issue of the periodical within the volume

    18

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    9310-9320

  • UT code for WoS article

  • EID of the result in the Scopus database