On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F12%3APU97719" target="_blank" >RIV/00216305:26110/12:PU97719 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence
Original language description
Schauder's fixed point technique is applied to asymptotical analysis of solutions of a linear Volterra difference equation $$ x(n+1)=a(n)+b(n)x(n)+sumlimits^{n}_{i=0}K(n,i)x(i) $$ where $nin bN_0$, $xcolonbN_0tobR$, $acolon bN_0tobR$, $KcolonbN_0timesbN_0to bR$, and $bcolonbN_0 to bRsetminus{0}$ is $omega$-periodic. In the paper, sufficient conditions are derived for the validity of a property of solutions that, for every admissible constant $cin bR$, there exists a solution$x=x(n)$ such that $$ {x(n){sim}}left(c+sumlimits_{i=0}^{n-1}frac{a(i)}{beta(i+1)}right)beta(n),$$ where $beta(n)=prodlimits_{j=0}^{n-1}b(j)$, for $ntoinfty$ and inequalities for solutions are derived. Relevant comparisons and illustrative examples are given as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Difference equations and dynamic equations on time scales III</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
2012
Issue of the periodical within the volume
18
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
9310-9320
UT code for WoS article
—
EID of the result in the Scopus database
—