Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F13%3APU102627" target="_blank" >RIV/00216305:26110/13:PU102627 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements
Original language description
An averaging method for the second-order approximation of the values of the gradient of an arbitrary smooth function u = u(x1, x2) at the vertices of a regular triangulation Th composed both of rectangles and triangles is presented. The method assumes that only the interpolant Pi_h[u] of u in the finite element space of the linear triangular and bilinear rectangular finite elements from Th is known. A complete analysis of this method is an extension of the complete analysis concerning the finite element spaces of linear triangular elements from [Dalík J., Averaging of directional derivatives in vertices of nonobtuse regular triangulations, Numer. Math., 2010, 116(4), 619-644]. The second-order approximation of the gradient is extended from the vertices to the whole domain and applied to the a posteriori error estimates of the finite element solutions of the planar elliptic boundary-value problems of second order. Numerical illustrations of the accuracy of the averaging method and of t
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
CENT EUR J MATH
ISSN
1895-1074
e-ISSN
—
Volume of the periodical
4
Issue of the periodical within the volume
11
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
597-608
UT code for WoS article
—
EID of the result in the Scopus database
—