On Holomorphically Projective Mappings From Manifolds With Equiaffine Connection Onto Kähler Manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F13%3APU106633" target="_blank" >RIV/00216305:26110/13:PU106633 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/13:33145798
Result on the web
<a href="http://dx.doi.org/10.5817/AM2013-5-295" target="_blank" >http://dx.doi.org/10.5817/AM2013-5-295</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5817/AM2013-5-295" target="_blank" >10.5817/AM2013-5-295</a>
Alternative languages
Result language
angličtina
Original language name
On Holomorphically Projective Mappings From Manifolds With Equiaffine Connection Onto Kähler Manifolds
Original language description
In this paper we study fundamental equations of holomorphically projective mappings from manifold with equiaffine connection onto (pseudo-) Kähler manifolds with respect to the smoothness class of connection and metrics. We show that holomorphically projective mappings preserve the smoothness class of connections and metrics.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ARCHIVUM MATHEMATICUM
ISSN
0044-8753
e-ISSN
—
Volume of the periodical
2013
Issue of the periodical within the volume
49
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
8
Pages from-to
297-302
UT code for WoS article
—
EID of the result in the Scopus database
—