All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Holomorphically Projective Mappings From Manifolds With Equiaffine Connection Onto Kähler Manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F13%3APU106633" target="_blank" >RIV/00216305:26110/13:PU106633 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/13:33145798

  • Result on the web

    <a href="http://dx.doi.org/10.5817/AM2013-5-295" target="_blank" >http://dx.doi.org/10.5817/AM2013-5-295</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5817/AM2013-5-295" target="_blank" >10.5817/AM2013-5-295</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Holomorphically Projective Mappings From Manifolds With Equiaffine Connection Onto Kähler Manifolds

  • Original language description

    In this paper we study fundamental equations of holomorphically projective mappings from manifold with equiaffine connection onto (pseudo-) Kähler manifolds with respect to the smoothness class of connection and metrics. We show that holomorphically projective mappings preserve the smoothness class of connections and metrics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ARCHIVUM MATHEMATICUM

  • ISSN

    0044-8753

  • e-ISSN

  • Volume of the periodical

    2013

  • Issue of the periodical within the volume

    49

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    8

  • Pages from-to

    297-302

  • UT code for WoS article

  • EID of the result in the Scopus database