All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unbounded solutions of the equation $dot y(t)=sum_{i=1}^{n}beta_{i}$ (t)left[y(t-delta_{i})-y(t-tau_{i})right]$

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F13%3APU106715" target="_blank" >RIV/00216305:26110/13:PU106715 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unbounded solutions of the equation $dot y(t)=sum_{i=1}^{n}beta_{i}$ (t)left[y(t-delta_{i})-y(t-tau_{i})right]$

  • Original language description

    Asymptotic behavior of solutions of first-order differential equation with deviating arguments in the form $dot y(t)=sum_{i=1}^{n}beta_{i}(t)left[y(t-delta_{i})-y(t-tau_{i})right]$ is discussed for $ttoinfty$. A criterion for representing solutions in exponential form is proved. Inequalities for solution estimation are given. Sufficient conditions for the existence of unbounded solutions are derived. A relevant illustrative example is given as well. Known results are discussed and compared.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F11%2F0768" target="_blank" >GAP201/11/0768: Qualitative properties of solutions of differential equations and their applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    APPLIED MATHEMATICS AND COMPUTATION

  • ISSN

    0096-3003

  • e-ISSN

  • Volume of the periodical

    2013

  • Issue of the periodical within the volume

    221

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    610-619

  • UT code for WoS article

  • EID of the result in the Scopus database