Unbounded solutions of the equation $dot y(t)=sum_{i=1}^{n}beta_{i}$ (t)left[y(t-delta_{i})-y(t-tau_{i})right]$
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F13%3APU106715" target="_blank" >RIV/00216305:26110/13:PU106715 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Unbounded solutions of the equation $dot y(t)=sum_{i=1}^{n}beta_{i}$ (t)left[y(t-delta_{i})-y(t-tau_{i})right]$
Original language description
Asymptotic behavior of solutions of first-order differential equation with deviating arguments in the form $dot y(t)=sum_{i=1}^{n}beta_{i}(t)left[y(t-delta_{i})-y(t-tau_{i})right]$ is discussed for $ttoinfty$. A criterion for representing solutions in exponential form is proved. Inequalities for solution estimation are given. Sufficient conditions for the existence of unbounded solutions are derived. A relevant illustrative example is given as well. Known results are discussed and compared.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0768" target="_blank" >GAP201/11/0768: Qualitative properties of solutions of differential equations and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
2013
Issue of the periodical within the volume
221
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
610-619
UT code for WoS article
—
EID of the result in the Scopus database
—