All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Outlier identification based on local extreme quantile estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F16%3APU119354" target="_blank" >RIV/00216305:26110/16:PU119354 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Outlier identification based on local extreme quantile estimation

  • Original language description

    An extensive time series observations serve for an input in wide range of technical, economical and environmental application areas. However, the verification of validity of such data is necessary condition for any further analysis. Correctness of the data can be proven with respect to various criteria, mainly the attention is focused on detecting possible outliers in the series. Among others, these comprise observations corrupted by failure of any measuring instrument or influence of other than the quantity of interest. In this contribution we present an advanced technique for time series outlier detection based on extreme value analysis. Extreme value theory is being successfully applied in many branches, and hence provides an adequate framework for detection of rare events such as outliers. The suitability of the method proposed is also discussed with respect to eventual automation of the whole procedure. The method was applied for validation of hourly air pollution data obtained in Brno, Czech Republic. The measurements were provided by automated instruments at locations with high traffic and industrial load. The proposed method might simplify the procedure of such extensive data verification.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 22nd International Conference on Soft Computing MENDEL 2016

  • ISBN

    978-80-214-5365-4

  • ISSN

    1803-3814

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    255-260

  • Publisher name

    Brno University of Technology

  • Place of publication

    Brno, Czech Republic

  • Event location

    Brno

  • Event date

    Jun 8, 2016

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article