Sensitivity assessment of extremal index maxima estimates in the estimation of extreme values for stationary time series
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU123877" target="_blank" >RIV/00216305:26110/17:PU123877 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Sensitivity assessment of extremal index maxima estimates in the estimation of extreme values for stationary time series
Original language description
Extremal index is the primary measure of local dependence of extreme values, and plays thus an important role in extreme value estimation for stationary processes. The maxima estimators are often preferred in practical situations. These estimators are based on properties of the block maxima asymptotically characterized by the Generalized extreme value distribution. In contrast to the other methods, the maxima estimators gain advantage in stability to the choice of auxiliary parameters. Still the main part of maxima methods is selection of a proper approximation to marginal distribution of the underlying process. Although the suitability of the approximation may significantly affect the estimation quality, to the effect of available approaches has not been paid a great interest in the literature. The aim of this contribution is the comparison of available sampling schemes and the assessment of sensitivity of existing maxima estimates of the extremal index.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Matematika, informační technologie a aplikované vědy, MITAV 2017
ISBN
978-80-7231-417-1
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
Univerzita obrany
Place of publication
Brno
Event location
Brno
Event date
Jun 15, 2017
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—