Polynomial chaos expansion for surrogate modelling: Theory and software
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F18%3APU129537" target="_blank" >RIV/00216305:26110/18:PU129537 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/best.201800048" target="_blank" >http://dx.doi.org/10.1002/best.201800048</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/best.201800048" target="_blank" >10.1002/best.201800048</a>
Alternative languages
Result language
angličtina
Original language name
Polynomial chaos expansion for surrogate modelling: Theory and software
Original language description
The paper is focused on the application of a surrogate model to reliability analysis. Despite recent advances in this field, the reliability analysis of complex non-linear finite element models is still highly time-consuming. Thus, the approximation of the nonlinear finite element model by a surrogate meta-model is often the only choice if one wishes to perform a sufficient amount of simulations to enable reliability analysis. First, the basic theory of polynomial chaos expansion (PCE) is described, including the transformation of correlated random variables. The usage of the PCE for the estimation of statistical moments and sensitivity analysis is then presented. It can be done efficiently via the post-processing of the employed surrogate model in explicit form without any additional computational demands. The possibility of utilizing the adaptive algorithm Least Angle Regression is also discussed. The implementation of the discussed theory into a software tool, and its application, are presented in the last part of the paper.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20102 - Construction engineering, Municipal and structural engineering
Result continuities
Project
<a href="/en/project/GA18-13212S" target="_blank" >GA18-13212S: Response surface and sensitivity analysis methods in stochastic computational mechanics (RESUS)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Beton und Stahlbeton
ISSN
0005-9900
e-ISSN
1437-1006
Volume of the periodical
2
Issue of the periodical within the volume
113
Country of publishing house
DE - GERMANY
Number of pages
6
Pages from-to
27-32
UT code for WoS article
000444410900006
EID of the result in the Scopus database
—