All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

GENERALIZATION OF COLORING LINEAR TRANSFORMATION

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F18%3APU130577" target="_blank" >RIV/00216305:26110/18:PU130577 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.31490/tces-2018-0013" target="_blank" >http://dx.doi.org/10.31490/tces-2018-0013</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.31490/tces-2018-0013" target="_blank" >10.31490/tces-2018-0013</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    GENERALIZATION OF COLORING LINEAR TRANSFORMATION

  • Original language description

    The paper is focused on the technique of linear transformation between correlated and uncorrelated Gaussian random vectors, which is more or less commonly used in the reliability analysis of structures. These linear transformations are frequently needed to transform uncorrelated random vectors into correlated vectors with a prescribed covariance matrix (coloring transformation), and also to perform an inverse (whitening) transformation, i.e. to decorrelate a random vector with a non-identity covariance matrix. Two well-known linear transformation techniques, namely Cholesky decomposition and eigendecomposition (also known as principal component analysis, or the orthogonal transformation of a covariance matrix), are shown to be special cases of the generalized linear transformation presented in the paper. The proposed generalized linear transformation is able to rotate the transformation randomly, which may be desired in order to remove unwanted directional bias. The conclusions presented herein may be useful for structural reliability analysis with correlated random variables or random fields.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    20102 - Construction engineering, Municipal and structural engineering

Result continuities

  • Project

    <a href="/en/project/LO1408" target="_blank" >LO1408: AdMaS UP – Advanced Building Materials, Structures and Technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series

  • ISSN

    1804-4824

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    5

  • Pages from-to

    31-35

  • UT code for WoS article

  • EID of the result in the Scopus database