All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Utilization of artificial neural networks for global sensitivity analysis of model output

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU131736" target="_blank" >RIV/00216305:26110/19:PU131736 - isvavai.cz</a>

  • Result on the web

    <a href="https://aip.scitation.org/doi/abs/10.1063/1.5114107" target="_blank" >https://aip.scitation.org/doi/abs/10.1063/1.5114107</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.5114108" target="_blank" >10.1063/1.5114108</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Utilization of artificial neural networks for global sensitivity analysis of model output

  • Original language description

    The paper deals with the application of artificial neural networks to sensitivity measurement of the output quantity to the variability of input quantities. The original nonlinear FEM model calculates ultimate load-bearing capacity of a T-shaped prestressed concrete roof girder. Latin hypercube sampling algorithm is used to generate samples of input variables. The global Sobol sensitivity analysis is proposed to understand the effect of the input variability on the quantity of interest. The outputs of the Sobol sensitivity analysis are verified by subsequent two sensitivity analyses. The first studies show that artificial neural networks are very promising for effective evaluation of global sensitivity analysis. Artificial neural networks do not eliminate mutual interaction among input quantities; it is a very important piece of knowledge connected with maintaining the satisfactory accurateness of the reliability computation.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20101 - Civil engineering

Result continuities

  • Project

    <a href="/en/project/GA17-02862S" target="_blank" >GA17-02862S: Probabilistic modelling and optimization of shear strength of concrete beams (PROMOSS)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AIP Conference Proceedings

  • ISBN

    978-0-7354-1854-7

  • ISSN

    0094-243X

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    „120005-1“-„120005-4“

  • Publisher name

    American Institute of Physics Inc.

  • Place of publication

    MELVILLE, USA

  • Event location

    Ixia, Rhodes

  • Event date

    Sep 13, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000521108600119