All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of Ultrafine Additives on the Morphology of Cement Hydration Products

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F21%3APU141478" target="_blank" >RIV/00216305:26110/21:PU141478 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4352/11/8/1002" target="_blank" >https://www.mdpi.com/2073-4352/11/8/1002</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/cryst11081002" target="_blank" >10.3390/cryst11081002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of Ultrafine Additives on the Morphology of Cement Hydration Products

  • Original language description

    The present research is focused on the investigation of the influence of ultrafine additives on the structure formation of hardened cement paste and the establishment of the mechanisms of the morphological transformations, which determine the properties of hydrated products. In the course of the research, the modification of ordinary Portland cement was performed by the suspension of multi-walled carbon nanotubes (MWCNTs), carbon black (CB) paste, and silica fume (SF). Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD) analysis, thermal analysis, and Fourier-transform infrared (FTIR) spectroscopy were used to study cement hydration products. The morphology of hardened cement paste depends on the chemical reactivity of additives, their geometry, and their genesis. The action mechanism of the inert carbon-based additives and pozzolanic silica fume were considered. The cement hydration products formed in the process of modification by both types of ultrafine additives are described. In the case of the modification of cement paste by inert MWCNTs and CB paste, the formation of cement hydration products on their surface without strong adhesion was observed, whereas in the case of the addition of SF separately and together with MWCNTs, the strong adhesion of additives and cement hydration products was noted.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Crystals

  • ISSN

    2073-4352

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

    1002-1022

  • UT code for WoS article

    000688901700001

  • EID of the result in the Scopus database

    2-s2.0-85113445873