The Effect of Complex Modification on the Impedance of Cement Matrices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F21%3APU143544" target="_blank" >RIV/00216305:26110/21:PU143544 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/ma14030557" target="_blank" >https://doi.org/10.3390/ma14030557</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma14030557" target="_blank" >10.3390/ma14030557</a>
Alternative languages
Result language
angličtina
Original language name
The Effect of Complex Modification on the Impedance of Cement Matrices
Original language description
The research results presented in this article were obtained by joint scientific research on creatingcement materials with reduced impedance. It is known that functional additives added to impart electrically conductive properties have a negative impact on physical and mechanical characteristics of the material. This study suggests using the multiwall carbon nanotubes in the amount of 7% from binder mass as a functional additive. The results obtained prove that the addition of this amount of the modifier does not lead to a significant decrease of strength characteristics. Calcium nitrate in the amount of 1–7% was added in order to level the strength loss and to ensure the effective stable electrical conductivity. The multifunctionality of using this salt has been proven, which is manifested in the anti-frost and anticorrosive effects as well in enhancement of electrical conductivity. The optimal composition of the additive with 7% of carbon nanotubes and 3% of calcium nitrate ensures a reduced electrical impedance of cement matrix. The electrical conductivity was 2440 Ohm, while the decrease of strength properties was within 10% in comparison tothe control sample. The nature of changes in the microstructure were studied to determine the influence of complex modifications that showed significant changes in the morphology of the hydration products. The optimum electrical characteristics of cementitious materials are provided due to the uniform distribution of carbon nanotubes and the formation of a network of interconnected micropores filled with the solution of calcium nitrate that provides additional and stable electrical conductivity over time.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
<a href="/en/project/GC20-09072J" target="_blank" >GC20-09072J: Structure formation of advanced silicate composites with reduced impedance</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Materials
ISSN
1996-1944
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
1-11
UT code for WoS article
000615393500001
EID of the result in the Scopus database
2-s2.0-85100242847