All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Preparation and Characterization of Glass-Ceramic Foam from Clay-Rich Waste Diatomaceous Earth

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU143430" target="_blank" >RIV/00216305:26110/22:PU143430 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1944/15/4/1384" target="_blank" >https://www.mdpi.com/1996-1944/15/4/1384</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma15041384" target="_blank" >10.3390/ma15041384</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Preparation and Characterization of Glass-Ceramic Foam from Clay-Rich Waste Diatomaceous Earth

  • Original language description

    In this study, the potential of use of waste diatomaceous earth from production of diatomaceous earth for filtration purposes, as an alternative raw material for foam glass production, was explored. The Chemical and mineralogical composition, and the high temperature behavior of waste diatomite were studied to assess the suitability of this material for foam glass production. Glass-ceramic foams were prepared using NaOH solution as foaming agent, via hydrate mechanism. The Influence of different pretreatment and firing temperatures on the foam’ structure, bulk density and compressive strength was investigated. High temperature behavior was studied using TG/DTA analysis and high temperature microscopy. Phase composition was studied using X-ray diffraction analysis. Glass-ceramic foam samples of high porosity comparable to conventional foam glass products were fabricated. Both pretreatment temperature and foaming temperature were found to have a significant influence on foam properties. With increased pretreatment temperature pyrogenic carbon from thermal decomposition of organic matter contained in the raw material acted as an additional foaming agent and remained partially unoxidized in prepared foams. Bulk densities of prepared samples ranged from 150 kg/m3 to 510 kg/m3 and their compressive strength was between 140 and 1270 kPa.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    000763453400001

  • EID of the result in the Scopus database

    2-s2.0-85124689583