All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the geometry in the large of Einstein-like manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU146839" target="_blank" >RIV/00216305:26110/22:PU146839 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/22:73613482

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/10/13/2208" target="_blank" >https://www.mdpi.com/2227-7390/10/13/2208</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math10132208" target="_blank" >10.3390/math10132208</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the geometry in the large of Einstein-like manifolds

  • Original language description

    Gray has presented the invariant orthogonal irreducible decomposition of the space of all covariant tensors of rank 3, obeying only the identities of the gradient of the Ricci tensor. This decomposition introduced the seven classes of Einstein-like manifolds, the Ricci tensors of which fulfill the defining condition of each subspace. The large-scale geometry of such manifolds has been studied by many geometers using the classical Bochner technique. However, the scope of this method is limited to compact Riemannian manifolds. In the present paper, we prove several Liouville-type theorems for certain classes of Einstein-like complete manifolds. This represents an illustration of the new possibilities of geometric analysis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    2208

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    10

  • Pages from-to

    „2208-01“-„2208-10“

  • UT code for WoS article

    000824327600001

  • EID of the result in the Scopus database

    2-s2.0-85133287431