On the geometry in the large of Einstein-like manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU146839" target="_blank" >RIV/00216305:26110/22:PU146839 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/22:73613482
Result on the web
<a href="https://www.mdpi.com/2227-7390/10/13/2208" target="_blank" >https://www.mdpi.com/2227-7390/10/13/2208</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10132208" target="_blank" >10.3390/math10132208</a>
Alternative languages
Result language
angličtina
Original language name
On the geometry in the large of Einstein-like manifolds
Original language description
Gray has presented the invariant orthogonal irreducible decomposition of the space of all covariant tensors of rank 3, obeying only the identities of the gradient of the Ricci tensor. This decomposition introduced the seven classes of Einstein-like manifolds, the Ricci tensors of which fulfill the defining condition of each subspace. The large-scale geometry of such manifolds has been studied by many geometers using the classical Bochner technique. However, the scope of this method is limited to compact Riemannian manifolds. In the present paper, we prove several Liouville-type theorems for certain classes of Einstein-like complete manifolds. This represents an illustration of the new possibilities of geometric analysis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
2208
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
10
Pages from-to
„2208-01“-„2208-10“
UT code for WoS article
000824327600001
EID of the result in the Scopus database
2-s2.0-85133287431