New methods in collision of bodies analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU146781" target="_blank" >RIV/00216305:26110/23:PU146781 - isvavai.cz</a>
Result on the web
<a href="https://panm21.math.cas.cz/" target="_blank" >https://panm21.math.cas.cz/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/panm.2022.13" target="_blank" >10.21136/panm.2022.13</a>
Alternative languages
Result language
angličtina
Original language name
New methods in collision of bodies analysis
Original language description
The widely used method for solution of impacts of bodies, called the penalty method, is based on the contact force proportional to the length of the interpenetration of bodies. This method is regarded as unsatisfactory by the authors of this contribution, because of an inaccurate fulfillment of the energy conservation law and violation of the natural demand of impenetrability of bodies. Two non-traditional methods for the solution of impacts of bodies satisfy these demands exactly, or approximately, but much better than the penalty method. Namely the energy method exactly satisfies the conservation of energy law, whereas the kinematic method exactly satisfies the condition of impenetrability of bodies. Both these methods are superior in comparison with the penalty method, which is demonstrated by the results of several numerical examples.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Programs and Algorithms of Numerical Mathematics 22
ISBN
978-80-85823-73-8
ISSN
—
e-ISSN
—
Number of pages
16
Pages from-to
133-148
Publisher name
Matematický ústav AV ČR
Place of publication
Praha
Event location
Jablonec nad Nisou
Event date
Jun 19, 2022
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
001362525500013