All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

New methods in collision of bodies analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU146781" target="_blank" >RIV/00216305:26110/23:PU146781 - isvavai.cz</a>

  • Result on the web

    <a href="https://panm21.math.cas.cz/" target="_blank" >https://panm21.math.cas.cz/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21136/panm.2022.13" target="_blank" >10.21136/panm.2022.13</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    New methods in collision of bodies analysis

  • Original language description

    The widely used method for solution of impacts of bodies, called the penalty method, is based on the contact force proportional to the length of the interpenetration of bodies. This method is regarded as unsatisfactory by the authors of this contribution, because of an inaccurate fulfillment of the energy conservation law and violation of the natural demand of impenetrability of bodies. Two non-traditional methods for the solution of impacts of bodies satisfy these demands exactly, or approximately, but much better than the penalty method. Namely the energy method exactly satisfies the conservation of energy law, whereas the kinematic method exactly satisfies the condition of impenetrability of bodies. Both these methods are superior in comparison with the penalty method, which is demonstrated by the results of several numerical examples.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Programs and Algorithms of Numerical Mathematics 22

  • ISBN

    978-80-85823-73-8

  • ISSN

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    133-148

  • Publisher name

    Matematický ústav AV ČR

  • Place of publication

    Praha

  • Event location

    Jablonec nad Nisou

  • Event date

    Jun 19, 2022

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    001362525500013