Generative AI in the manufacturing process: theoretical considerations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU150098" target="_blank" >RIV/00216305:26110/23:PU150098 - isvavai.cz</a>
Result on the web
<a href="https://sciendo.com/article/10.2478/emj-2023-0029" target="_blank" >https://sciendo.com/article/10.2478/emj-2023-0029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/emj-2023-0029" target="_blank" >10.2478/emj-2023-0029</a>
Alternative languages
Result language
angličtina
Original language name
Generative AI in the manufacturing process: theoretical considerations
Original language description
The paper aims to identify how digital transformation and Generative Artificial Intelligence (GAI), in particular, affect the manufacturing processes. Several dimensions of the Industry 4.0 field have been considered, such as the design of new products, workforce and skill optimisation, enhancing quality control, predictive maintenance, demand forecasting, and marketing strategy. The paper adopts qualitative research based on a critical review approach. It provides evidence of the GAI technology support in the mentioned areas. Appropriate use of emerging technology allows managers to transform manufacturing by optimising processes, improving product design, enhancing quality control, and contributing to overall efficiency and innovation in the industry. Simultaneously, GAI technologies facilitate predictive analytics to forecast and anticipate future demand, quality issues, and potential risks, improve a marketing strategy and identify market trends.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
20101 - Civil engineering
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Engineering Management in Production and Services
ISSN
2543-6597
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
4
Country of publishing house
PL - POLAND
Number of pages
14
Pages from-to
76-89
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85182436211