On general solutions of equidistant vector fields on two-dimensional (pseudo-) Riemannian spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU150122" target="_blank" >RIV/00216305:26110/23:PU150122 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/23:73620734
Result on the web
<a href="https://www.pmf.ni.ac.rs/filomat-content/2023/37-25/37-25-16-20126.pdf" target="_blank" >https://www.pmf.ni.ac.rs/filomat-content/2023/37-25/37-25-16-20126.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL2325569P" target="_blank" >10.2298/FIL2325569P</a>
Alternative languages
Result language
angličtina
Original language name
On general solutions of equidistant vector fields on two-dimensional (pseudo-) Riemannian spaces
Original language description
The paper is devoted to studying equidistant two-dimensional (pseudo-) Riemannian spaces. Embeddings of these spaces in three-dimensional Euclidean and Minkowski spaces as revolution or helical surfaces are given. The general solution of equidistant equations is found beyond these spaces under minimal requirements for the differentiability of the studied objects. These vector fields are associated with Killing vector fields on those spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FILOMAT
ISSN
0354-5180
e-ISSN
2406-0933
Volume of the periodical
37
Issue of the periodical within the volume
25
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
6
Pages from-to
8569-8574
UT code for WoS article
001027126100001
EID of the result in the Scopus database
2-s2.0-85165041682