All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On general solutions of equidistant vector fields on two-dimensional (pseudo-) Riemannian spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU150122" target="_blank" >RIV/00216305:26110/23:PU150122 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/23:73620734

  • Result on the web

    <a href="https://www.pmf.ni.ac.rs/filomat-content/2023/37-25/37-25-16-20126.pdf" target="_blank" >https://www.pmf.ni.ac.rs/filomat-content/2023/37-25/37-25-16-20126.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2298/FIL2325569P" target="_blank" >10.2298/FIL2325569P</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On general solutions of equidistant vector fields on two-dimensional (pseudo-) Riemannian spaces

  • Original language description

    The paper is devoted to studying equidistant two-dimensional (pseudo-) Riemannian spaces. Embeddings of these spaces in three-dimensional Euclidean and Minkowski spaces as revolution or helical surfaces are given. The general solution of equidistant equations is found beyond these spaces under minimal requirements for the differentiability of the studied objects. These vector fields are associated with Killing vector fields on those spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    FILOMAT

  • ISSN

    0354-5180

  • e-ISSN

    2406-0933

  • Volume of the periodical

    37

  • Issue of the periodical within the volume

    25

  • Country of publishing house

    RS - THE REPUBLIC OF SERBIA

  • Number of pages

    6

  • Pages from-to

    8569-8574

  • UT code for WoS article

    001027126100001

  • EID of the result in the Scopus database

    2-s2.0-85165041682