All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Infinitesimal Transformations of Riemannian Manifolds - The Geometric Dynamics Point of View

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU150124" target="_blank" >RIV/00216305:26110/23:PU150124 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/23:73621045

  • Result on the web

    <a href="https://doi.org/10.3390/math11051114" target="_blank" >https://doi.org/10.3390/math11051114</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math11051114" target="_blank" >10.3390/math11051114</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Infinitesimal Transformations of Riemannian Manifolds - The Geometric Dynamics Point of View

  • Original language description

    In the present paper, we study the geometry of infinitesimal conformal, affine, projective, and harmonic transformations of complete Riemannian manifolds using the concepts of geometric dynamics and the methods of the modern version of the Bochner technique.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    „1114-1“-„1114-13“

  • UT code for WoS article

    000947376400001

  • EID of the result in the Scopus database

    2-s2.0-85149891364