All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparison of 1D and 3D hydrodynamic models in solving hydraulic object of dry reservoir

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F24%3APU150516" target="_blank" >RIV/00216305:26110/24:PU150516 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparison of 1D and 3D hydrodynamic models in solving hydraulic object of dry reservoir

  • Original language description

    This article describes and compares computational and result differences in 1D and 3D hydrodynamic models, which are used for capacity assessment of flow control structures. The paper focuses on a considered dry retention reservoir located on the Kotojedka stream near the city of Kroměříž, Czech Republic. Based on project documentation, a detailed 1D steady hydrodynamic model using functions of Microsoft Excel and its native VBA language was created for the functional object. The parameters of the functional object were optimized based on the results of the 1D model. During the 1D analysis, some uncertainties occurred which cannot be addressed using standard or even more complex hydraulic analytical methods, such as formation and course of hydraulic jump, manifestation of overflow and bottom inlet submergence and water surface elevation profile in apron. Experimental physical model research was not undertaken in this case due to the high cost of the model relative to its lower significance compared to other, much larger water structures. Therefore a 3D steady hydrodynamic model could bring the required solution in this case and provide the basis for object parameters optimisation. A 3D model was created using Flow–3D software. The results were compared on a series of QN flow rates from Q10 to Q10000, where QN represents the discharge with a repetition period of once in every N years.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20101 - Civil engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    JUNIORSTAV 2024

  • ISBN

    978-80-86433-83-7

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    1-9

  • Publisher name

    Brno University of Technology

  • Place of publication

    Brno, Czech republic

  • Event location

    Brno

  • Event date

    Jan 25, 2024

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article