All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Existence of a Bounded Solution of a Non-Homogeneous Linear Planar Discrete System

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F24%3APU151632" target="_blank" >RIV/00216305:26110/24:PU151632 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1063/5.0210151" target="_blank" >https://doi.org/10.1063/5.0210151</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0210151" target="_blank" >10.1063/5.0210151</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Existence of a Bounded Solution of a Non-Homogeneous Linear Planar Discrete System

  • Original language description

    The paper is concerned with a two-dimensional linear non-homogeneous system of discrete equations y_1 (k + 1) = p(k)y_1(k) + q(k)y_2 (k) + g_1 (k) , y_2 (k + 1) = −q(k)y_1 (k) + p(k)y_2 (k) + g_2 (k) , where k = k_0 , k_0 + 1 , . . . , k_0 is a fixed integer, p(k), q(k) and g_i (k), i = 1 , 2 are real functions, and y_i (k) are unknown functions. Sufficient conditions are given guaranteeing that a particular solution of this system is bounded.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AIP Conference Proceedings, Volume 3094, Issue 1, 7 June 2024, International Conference of Numerical Analysis and Applied Mathematics 2022, ICNAAM 2022

  • ISBN

    9780735449541

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    „400003-1“-„400003-4“

  • Publisher name

    American Institute of Physics

  • Place of publication

    USA

  • Event location

    Crete, Heraklion, hotel Galaxy

  • Event date

    Sep 11, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article