Existence of a Bounded Solution of a Non-Homogeneous Linear Planar Discrete System
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F24%3APU151632" target="_blank" >RIV/00216305:26110/24:PU151632 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1063/5.0210151" target="_blank" >https://doi.org/10.1063/5.0210151</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0210151" target="_blank" >10.1063/5.0210151</a>
Alternative languages
Result language
angličtina
Original language name
Existence of a Bounded Solution of a Non-Homogeneous Linear Planar Discrete System
Original language description
The paper is concerned with a two-dimensional linear non-homogeneous system of discrete equations y_1 (k + 1) = p(k)y_1(k) + q(k)y_2 (k) + g_1 (k) , y_2 (k + 1) = −q(k)y_1 (k) + p(k)y_2 (k) + g_2 (k) , where k = k_0 , k_0 + 1 , . . . , k_0 is a fixed integer, p(k), q(k) and g_i (k), i = 1 , 2 are real functions, and y_i (k) are unknown functions. Sufficient conditions are given guaranteeing that a particular solution of this system is bounded.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings, Volume 3094, Issue 1, 7 June 2024, International Conference of Numerical Analysis and Applied Mathematics 2022, ICNAAM 2022
ISBN
9780735449541
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
„400003-1“-„400003-4“
Publisher name
American Institute of Physics
Place of publication
USA
Event location
Crete, Heraklion, hotel Galaxy
Event date
Sep 11, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—