All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Solving inverse problems using machine learning-aided optimization method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F24%3APU152658" target="_blank" >RIV/00216305:26110/24:PU152658 - isvavai.cz</a>

  • Result on the web

    <a href="https://fib-international.org/publications/fib-proceedings/15th-phd-symposium-in-budapest-hungary-2024-proceedings-em-pdf-em-detail.html" target="_blank" >https://fib-international.org/publications/fib-proceedings/15th-phd-symposium-in-budapest-hungary-2024-proceedings-em-pdf-em-detail.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Solving inverse problems using machine learning-aided optimization method

  • Original language description

    Inverse problems play an important role in engineering practice such as characterizing materials, detecting structural damage, and optimizing designs. This paper introduces an inverse analysis meth-od using a finite element model as a digital twin of the real structure, which is updated with an Artifi-cial Neural Network-Aided Aimed Multilevel Sampling (ANN-AMS) optimization method. This method employs Latin hypercube sampling for efficient sample generation, AMS for sequential parameter targeting, and ANN for design space mapping. The proposed method is applied to solve two different inverse problems – the detection of truss bridge damage and the identification of me-chanical fracture parameters of alkali-activated fine-grained brittle matrix composites from fracture test records. The results confirmed the versatility, effectiveness and good accuracy of the method for both applied inverse problems.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20101 - Civil engineering

Result continuities

  • Project

    <a href="/en/project/GA24-10892S" target="_blank" >GA24-10892S: Machine Learning for Multiscale Modelling of Spatial Variability and Fracture for Sustainable Concrete Structures</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    15th fib International PhD Symposium in Civil Engineering

  • ISBN

    978-2-940643-24-0

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    533-540

  • Publisher name

    International Federation for Structural Concrete

  • Place of publication

    Budapest

  • Event location

    Budapešť

  • Event date

    Aug 28, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article