Solving inverse problems using machine learning-aided optimization method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F24%3APU152658" target="_blank" >RIV/00216305:26110/24:PU152658 - isvavai.cz</a>
Result on the web
<a href="https://fib-international.org/publications/fib-proceedings/15th-phd-symposium-in-budapest-hungary-2024-proceedings-em-pdf-em-detail.html" target="_blank" >https://fib-international.org/publications/fib-proceedings/15th-phd-symposium-in-budapest-hungary-2024-proceedings-em-pdf-em-detail.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Solving inverse problems using machine learning-aided optimization method
Original language description
Inverse problems play an important role in engineering practice such as characterizing materials, detecting structural damage, and optimizing designs. This paper introduces an inverse analysis meth-od using a finite element model as a digital twin of the real structure, which is updated with an Artifi-cial Neural Network-Aided Aimed Multilevel Sampling (ANN-AMS) optimization method. This method employs Latin hypercube sampling for efficient sample generation, AMS for sequential parameter targeting, and ANN for design space mapping. The proposed method is applied to solve two different inverse problems – the detection of truss bridge damage and the identification of me-chanical fracture parameters of alkali-activated fine-grained brittle matrix composites from fracture test records. The results confirmed the versatility, effectiveness and good accuracy of the method for both applied inverse problems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20101 - Civil engineering
Result continuities
Project
<a href="/en/project/GA24-10892S" target="_blank" >GA24-10892S: Machine Learning for Multiscale Modelling of Spatial Variability and Fracture for Sustainable Concrete Structures</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
15th fib International PhD Symposium in Civil Engineering
ISBN
978-2-940643-24-0
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
533-540
Publisher name
International Federation for Structural Concrete
Place of publication
Budapest
Event location
Budapešť
Event date
Aug 28, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—