Recurrent versus feed-forward neural networks used for identification of non-linear dynamic systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F00%3A00000141" target="_blank" >RIV/00216305:26210/00:00000141 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Recurrent versus feed-forward neural networks used for identification of non-linear dynamic systems
Original language description
The paper compaares feed-forward and recurrent neural network architectures use for identification of simple non-linear dynamic system in the terms of generalization abilities, result precision and computational requirements. Comparison has been made ona number of dynamic systems using Elman model as a representative of recurrent networks and various verions of gradient training applied on layered feed-forward networks with one hidden layer.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/VS96122" target="_blank" >VS96122: Resarch Laboratory for Mechatronic Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Mechatronics 2000
ISBN
83-914366-0-8
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
—
Publisher name
MEANDER S.C.
Place of publication
Warsaw, Poland
Event location
—
Event date
—
Type of event by nationality
—
UT code for WoS article
—