Statistical Properties of Discrete Probability Distributions with Maximum Entropy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F01%3APU24350" target="_blank" >RIV/00216305:26210/01:PU24350 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Statistical Properties of Discrete Probability Distributions with Maximum Entropy
Original language description
The paper is concerned with the solution of and statistical problem of finding discrete probability distributions conforming to the requirement of maximum entropy under conditions given by estimates of their general moments from the observed relative frequencies. It is shown that the distributions derived are of an exponential type with maximum likelihood estimations of parameters that are also estimations by and modified chi-squared method. Basic properties of these estimations are described and the reesults are illustrated by examples.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA101%2F00%2F0170" target="_blank" >GA101/00/0170: The transferability of fracture toughness characteristics from point a view of integrity of components with defects</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Folia Facultatis Scientiarium Naturalium Univesitatis Masarykinae Brunensis
ISBN
80-210-2544-1
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
21-32
Publisher name
Masaryk University Brno
Place of publication
Masaryk University, Brno
Event location
Jestřábí u Bystřice pod Hostýnem
Event date
Aug 28, 1999
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—