A working life diagnostic of insulating materials for electric machines winding
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F02%3APU30616" target="_blank" >RIV/00216305:26210/02:PU30616 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
čeština
Original language name
Pracovní životnost izolačních materiálů vinutí elektrických strojů
Original language description
The contribution deals with the use of artificalintelligence methods in the life diagnostics of Relanex insulating material thet is applied as insulation of elestric machine windings. For example, neural networks are one applicable method. The method belong to the appropriate tools that provide the modeling, identification and simulation of technological systems and units. In such a case, the insulating material is used as a modelled and identified system. The first part of the paper describes the archuutecture and the setting of neural networks, the description of input modelled and identified data. The second part shows (in the figures) the curves of identification, modelling and the simulation of insulating material behaviour with neural networks. Tables evaluate the application of this tool for solution of thr problems investigated. We have used the abovementioned neural networks for the diagnosticsof insulating materials that were programmed in Matlab 6 environment. All simulation
Czech name
Pracovní životnost izolačních materiálů vinutí elektrických strojů
Czech description
The contribution deals with the use of artificalintelligence methods in the life diagnostics of Relanex insulating material thet is applied as insulation of elestric machine windings. For example, neural networks are one applicable method. The method belong to the appropriate tools that provide the modeling, identification and simulation of technological systems and units. In such a case, the insulating material is used as a modelled and identified system. The first part of the paper describes the archuutecture and the setting of neural networks, the description of input modelled and identified data. The second part shows (in the figures) the curves of identification, modelling and the simulation of insulating material behaviour with neural networks. Tables evaluate the application of this tool for solution of thr problems investigated. We have used the abovementioned neural networks for the diagnosticsof insulating materials that were programmed in Matlab 6 environment. All simulation
Classification
Type
D - Article in proceedings
CEP classification
JA - Electronics and optoelectronics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA102%2F03%2F0621" target="_blank" >GA102/03/0621: Irreversible processes in insulating materials for high temperature</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Nové smery v diagnostike a opravách elektrických strojov a zariadení
ISBN
80-7100-960-1
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
179-184
Publisher name
EDIS- vadavateľstvo ŽU
Place of publication
Žilina, Slovenská republika
Event location
Žilina
Event date
May 20, 2002
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—