All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Natural operators lifting 1-forms to bundles of Weil contact elements

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F02%3APU41435" target="_blank" >RIV/00216305:26210/02:PU41435 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Natural operators lifting 1-forms to bundles of Weil contact elements

  • Original language description

    All natural operators lifting 1-forms from $m$-dimen-sional manifolds to the bundle functor $K^A$ of Weil contact elements are classified for the case of dwindlable Weil algebras. New results concerning subalgebras of fixed elements and the relationto dwindlable Weil algebras are stated. For some monomial Weil algebras, the Weil contact elements are interpreted geometrically.

  • Czech name

    Přirozené operátory liftující 1-formy na bandly Weilových dotykových elementů

  • Czech description

    Jsou popsány všechny přirozené operátory liftující 1-formy na bandly Weilových dotykových elementů.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F99%2F0296" target="_blank" >GA201/99/0296: Differential geometry of higher order</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2002

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin of the Irish Mathematical Society

  • ISSN

  • e-ISSN

  • Volume of the periodical

    49

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    18

  • Pages from-to

    23-40

  • UT code for WoS article

  • EID of the result in the Scopus database