All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Raster convergence with respect to a closure operator

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F05%3APU53612" target="_blank" >RIV/00216305:26210/05:PU53612 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Raster convergence with respect to a closure operator

  • Original language description

    Convergence with respect to a closure operator on a category is studied. In particular, convergence separation and convergence compactness are investigated.

  • Czech name

    Rastrová konvergence vzhledem k uzávěrovému operátoru

  • Czech description

    V článku je studována rastrová konvergence vzhledem k uzávěrovým operátorům na kategoriích. Pozornost je věnována vyšetřování konvergenční hausdorffovskosti a konvergenční kompaktnosti.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Cahiers de Topologie et Geometrie Differentielle Categoriques

  • ISSN

    0008-0004

  • e-ISSN

  • Volume of the periodical

    46

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    26

  • Pages from-to

    275-300

  • UT code for WoS article

  • EID of the result in the Scopus database