All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Onset of Microplasticity in Copper Crystal during Nanoindentation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F07%3APU68906" target="_blank" >RIV/00216305:26210/07:PU68906 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Onset of Microplasticity in Copper Crystal during Nanoindentation

  • Original language description

    The nanoindentation test in the dislocation free crystal of copper is simulated by finite element calculations coupled with ab initio calculation of ideal shear strength. The onset of microplasticity, associated with the pop-in effect identified in experimental nanoindentation tests (creation of first dislocations), is assumed to be related to the moment of achieving the value of the ideal shear strength for the copper crystal. This value also depends on the normal stress in the critical shear system inan approximately linear way, as follows from recently published first principle calculations. The calculated values of the critical shear stress (related to the ideal shear strength) lie exactly at the lower limit of the range of experimentally observedpop-ins in the copper crystal.

  • Czech name

    Onset of Microplasticity in Copper Crystal during Nanoindentation

  • Czech description

    The nanoindentation test in the dislocation free crystal of copper is simulated by finite element calculations coupled with ab initio calculation of ideal shear strength. The onset of microplasticity, associated with the pop-in effect identified in experimental nanoindentation tests (creation of first dislocations), is assumed to be related to the moment of achieving the value of the ideal shear strength for the copper crystal. This value also depends on the normal stress in the critical shear system inan approximately linear way, as follows from recently published first principle calculations. The calculated values of the critical shear stress (related to the ideal shear strength) lie exactly at the lower limit of the range of experimentally observedpop-ins in the copper crystal.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BM - Solid-state physics and magnetism

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Key Engineering Materials

  • ISSN

    1013-9826

  • e-ISSN

  • Volume of the periodical

    348-349

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    4

  • Pages from-to

    801-804

  • UT code for WoS article

  • EID of the result in the Scopus database