All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Constancy of the Electron Temperature in the Expanding Corona Throughout Solar Cycle 23

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F10%3APU88266" target="_blank" >RIV/00216305:26210/10:PU88266 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    čeština

  • Original language name

    On the Constancy of the Electron Temperature in the Expanding Corona Throughout Solar Cycle 23

  • Original language description

    A recent analysis of Fe emission lines observed during the total solar eclipses of 2006 March 29 and 2008 August 1 established the first empirical link between the electron temperature in the expanding corona and Fe charge states measured in interplanetary space. In this Letter, we use this link to infer this temperature throughout solar cycle 23 from in situ charge state measurements from the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE) and on Ulysses. Thedistribution of the SWICS/ACE Fe charge states, which span cycle 23 from 1998 to 2009, is skewed with a peak centered on Fe8+, Fe9+, and Fe10+ and a tail spanning Fe12+ to Fe20+. An iterative process based on this distribution and on the Fe ion fractionas a function of electron temperature yields a narrow peak at 1.1 E6 K. The tail in the measured charge state distribution is attributed to the sporadic release of material hotter than 2 E6 K from closed magnetic structures within the bul

  • Czech name

    On the Constancy of the Electron Temperature in the Expanding Corona Throughout Solar Cycle 23

  • Czech description

    A recent analysis of Fe emission lines observed during the total solar eclipses of 2006 March 29 and 2008 August 1 established the first empirical link between the electron temperature in the expanding corona and Fe charge states measured in interplanetary space. In this Letter, we use this link to infer this temperature throughout solar cycle 23 from in situ charge state measurements from the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE) and on Ulysses. Thedistribution of the SWICS/ACE Fe charge states, which span cycle 23 from 1998 to 2009, is skewed with a peak centered on Fe8+, Fe9+, and Fe10+ and a tail spanning Fe12+ to Fe20+. An iterative process based on this distribution and on the Fe ion fractionas a function of electron temperature yields a narrow peak at 1.1 E6 K. The tail in the measured charge state distribution is attributed to the sporadic release of material hotter than 2 E6 K from closed magnetic structures within the bul

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BN - Astronomy and celestial mechanics, astrophysics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA205%2F09%2F1469" target="_blank" >GA205/09/1469: Study of solar coronal structures and their dynamics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ASTROPHYSICAL JOURNAL

  • ISSN

    0004-637X

  • e-ISSN

  • Volume of the periodical

    2010 (711)

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    4

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database