All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ENERGY HARVESTING – OPPORTUNITY FOR FUTURE REMOTE APPLICATIONS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F11%3APU94951" target="_blank" >RIV/00216305:26210/11:PU94951 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    čeština

  • Original language name

    ENERGY HARVESTING – OPPORTUNITY FOR FUTURE REMOTE APPLICATIONS

  • Original language description

    This paper deals with energy harvesting principles, current and future applications of these devices. The paper critically evaluates opportunity of such power supplies for future remote applications (wireless sensing, autonomous electronics, mobile technologies etc.) and makes an effort to describe advantages of energy harvesters against traditional power supplies. The definition of energy harvesting describes these technologies as the use of an ambient energy to provide electrical power for small electronic and electrical devices making them self-sufficient. The technologies employed variously convert human power, body fluids, heat differences, vibration or other movement, ultraviolet, visible light or infrared to electricity and there are more options coming along. The progress in wireless technologies on start of new millennium made demands on inexhaustible power source for wireless applications and the ambient energy seems like the suitable power source. The surrounding of most engineering systems contains some form of an ambient energy. Currently most of energy harvesting applications is tested in the laboratory and practical applications of some energy harvesting technologies (photovoltaic, thermoelectric generators, vibration energy harvesters etc.) have been used in several engineering applications. The aim of this paper is brief state of art and review of these technologies.

  • Czech name

    ENERGY HARVESTING – OPPORTUNITY FOR FUTURE REMOTE APPLICATIONS

  • Czech description

    This paper deals with energy harvesting principles, current and future applications of these devices. The paper critically evaluates opportunity of such power supplies for future remote applications (wireless sensing, autonomous electronics, mobile technologies etc.) and makes an effort to describe advantages of energy harvesters against traditional power supplies. The definition of energy harvesting describes these technologies as the use of an ambient energy to provide electrical power for small electronic and electrical devices making them self-sufficient. The technologies employed variously convert human power, body fluids, heat differences, vibration or other movement, ultraviolet, visible light or infrared to electricity and there are more options coming along. The progress in wireless technologies on start of new millennium made demands on inexhaustible power source for wireless applications and the ambient energy seems like the suitable power source. The surrounding of most engineering systems contains some form of an ambient energy. Currently most of energy harvesting applications is tested in the laboratory and practical applications of some energy harvesting technologies (photovoltaic, thermoelectric generators, vibration energy harvesters etc.) have been used in several engineering applications. The aim of this paper is brief state of art and review of these technologies.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JB - Sensors, detecting elements, measurement and regulation

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Engineering Mechanics 2011

  • ISBN

    978-80-87012-33-8

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    167-170

  • Publisher name

    Academy of sciences of the Czech Republic, v.v.i.

  • Place of publication

    Praha

  • Event location

    Svratka

  • Event date

    May 9, 2011

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article

    000313492700035