The stability analysis of a discretized pantograph equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F11%3APU95307" target="_blank" >RIV/00216305:26210/11:PU95307 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The stability analysis of a discretized pantograph equation
Original language description
The paper deals with a difference equation arising from the scalar pantograph equation via the backward Euler discretization. A case when the solution tends to zero but after reaching a certain index it loses this tendency is discussed. We analyse this problem and estimate the value of such an index. Furthermore, we show that the utilized proof technique enables us to investigate some other numerical formulae, too.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0469" target="_blank" >GA201/08/0469: Oscillatory and asymptotic properties of solutions of differential equations</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Bohemica
ISSN
0862-7959
e-ISSN
—
Volume of the periodical
136
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
10
Pages from-to
385-394
UT code for WoS article
—
EID of the result in the Scopus database
—