All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An Optimal Relationship Between Casting Speed and Heat Transfer Coefficients for Continuous Casting Process

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F11%3APU98569" target="_blank" >RIV/00216305:26210/11:PU98569 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    An Optimal Relationship Between Casting Speed and Heat Transfer Coefficients for Continuous Casting Process

  • Original language description

    The quality of steel slabs produced by continuous casting is influenced by various factors. Casting speed, cooling rates and the temperature distribution, particularly on the surface of casted product are factors with very strong impacts to the process and therefore, we focus on a determination of their optimal relationship. More precisely, this paper investigates how the optimal cooling depends on the chosen speed of casting. For finding this relationship we built our original 2D numerical model of the continuous casting process and by its optimization we acquire the cooling for producing the steel slabs with optimal quality. The numerical model is based on enthalpy approach, which can simulate phase and structural changes for steel of arbitrary chemical composition, and the cooling is included in boundary conditions in the form of heat transfer coefficients. The optimal heat transfer coefficients are obtained by a modern heuristic optimization algorithm, called Firefly algorithm. By repeated fixing of casting speed in the model to different values and finding its associated optimal cooling, we receive the investigated relationship. The future work is defining cooling rates as a function of heat transfer coefficients and surface temperature.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JG - Metallurgy, metal materials

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    METAL 2011 Conference proceedings

  • ISBN

    978-80-87294-24-6

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    42-48

  • Publisher name

    Tanger

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    May 18, 2011

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000302746700004