All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Why oxides intensify spray cooling?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F12%3APU101362" target="_blank" >RIV/00216305:26210/12:PU101362 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Why oxides intensify spray cooling?

  • Original language description

    Spray cooling is a typical technique used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Cooling intensity is primarily affected by spray parameters as pressure and coolant impingement density. It is not frequently reported but even thin layers of oxides can significantly modify the cooling intensity. This effect is dominant in the cooling of steel surfaces at high surface temperatures. Experimental investigation comparing the cooling of scale-free surfaces and oxidized surfaces show a difference in 50-80% in the cooling intensity. Even a scale layer of several microns can significantly modify the cooling intensity. A low thermal conductivity of the oxides makes the cooling more intensive. The paper provides experimental evidence of this fact and explains the mechanism of spray cooling with boiling. The Leidenfrost phenomenon and change in surface temperature provides key to the explanation why the hot surface covered by the oxides is frequently

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

    BJ - Thermodynamics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/EE2.3.20.0188" target="_blank" >EE2.3.20.0188: Multidisciplinary Team for Research and Development of Heat Processes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů