All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

FINAL-STRUCTURE PREDICTION OF CONTINUOUSLY CAST BILLETS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F12%3APU97595" target="_blank" >RIV/00216305:26210/12:PU97595 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    FINAL-STRUCTURE PREDICTION OF CONTINUOUSLY CAST BILLETS

  • Original language description

    In steel production, controlling and monitoring quality, grade and structure of final steel products are very important issues. It has been shown that the temperature distribution, the magnitude of temperature gradients, as well as the cooling strategy during the continuous steel casting have a significant impact on material properties, the structure and any defect formation of cast products. The paper describes an accurate computational tool intended for investigating the transient phenomena in continuously cast billets, for developing the caster control techniques and also for determining the optimum cooling strategy in order to meet all quality requirements. The numerical model of the temperature field is based on the finite-difference implementation of the 3D energy-balance equation using the enthalpy approach. This allows us to analyse the temperature field along the entire cast billet. Since the steel billets are produced constantly 24 hours per day, the transient temperature field is being computed in a non-stop trial run. It enables us to monitor and investigate the formation of the temperature field in real time within the mould, as well as the secondary and tertiary cooling zones, where the observed information can be immediately utilized for the caster-control optimization with respect to the whole machine or just an individual part. The application of the presented model is demonstrated with two examples including the steelworks in Trinec, Czech Republic, and in Podbrezová, Slovakia. To consider different operational conditions, the influences of the secondary-cooling setting on the surface and the inner defects formation, and on the final structure of the 150 x150 mm billet are also discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JG - Metallurgy, metal materials

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materiali in tehnologije

  • ISSN

    1580-2949

  • e-ISSN

  • Volume of the periodical

    46

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    SI - SLOVENIA

  • Number of pages

    6

  • Pages from-to

    155-160

  • UT code for WoS article

    000303371300011

  • EID of the result in the Scopus database