Influence of Water Temperature on The Cooling Intensity of Mist Nozzles in Continuous Casting
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F12%3APU99224" target="_blank" >RIV/00216305:26210/12:PU99224 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Influence of Water Temperature on The Cooling Intensity of Mist Nozzles in Continuous Casting
Original language description
Small mist nozzles used in continuous casting were tested for heat transfer intensity. These nozzles are used in the secondary cooling area of a steel slab casting machine. Impact pressure distribution was measured first. Laboratory measurements of cooling intensity (heat transfer coefficient distribution) were performed with a variable water temperature. A temperature range from 20 degree C to 80 degree C was used in the tests. Surprisingly, the water temperature was found to have a strong influence. The most noticeable effect is a shift of the Leidenfrost temperature to low temperatures. Changing the water temperature from 20 degree C to 80 degree C caused a change of the Leidenfrost temperature of 130 degree C. This can be significant and can change the cooling character in the continuous casting machine. It is interesting that with an increase of the cooling intensity with a growing water temperature in a high temperature region (above Leidenfrost temperature), there is a small difference about 30 W/m2K. Surprisingly high differences in the Leidenfrost temperature were found for an intensive cooling where a difference of only 20 degree C in the coolant temperature makes a difference of about 100 degreeC in the Leidenfrost temperature. The results of the experiments performed with an elevated water temperature showed a high sensitivity of the cooling intensity to this parameter. The decreasing effect of the cooling intensity with the water temperature is more important for spray cooling of high intensities.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JG - Metallurgy, metal materials
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Materiali in tehnologije
ISSN
1580-2949
e-ISSN
—
Volume of the periodical
46
Issue of the periodical within the volume
3
Country of publishing house
SI - SLOVENIA
Number of pages
5
Pages from-to
311-315
UT code for WoS article
000305657100020
EID of the result in the Scopus database
—