Predictor?corrector Obreshkov pairs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F13%3APU101911" target="_blank" >RIV/00216305:26210/13:PU101911 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs00607-012-0258-0" target="_blank" >http://link.springer.com/article/10.1007%2Fs00607-012-0258-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00607-012-0258-0" target="_blank" >10.1007/s00607-012-0258-0</a>
Alternative languages
Result language
angličtina
Original language name
Predictor?corrector Obreshkov pairs
Original language description
The combination of predictor?corrector (PEC) pairs of Adams methods can be generalized to high derivative methods using Obreshkov quadrature formulae. It is convenient to construct predictor?corrector pairs using a combination of explicit (Adams?Bashforth for traditional PEC methods) and implicit (Adams?Moulton for traditional PEC methods) forms of the methods. This paper will focus on one special case of a fourth order method consisting of a two-step predictor followed by a one-step corrector, each using second derivative formulae. There is always a choice in predictor?corrector pairs of the so-called mode of the method and we will consider both PEC and PECE modes. The Nordsieck representation of Adams methods, as developed by C. W. Gear and others, adapts well to the multiderivative situation and will be used to make variable stepsize convenient. In the first part of the paper we explain the basic approximations used in the predictor?corrector formula. Those can be written in terms o
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMPUTING
ISSN
0010-485X
e-ISSN
—
Volume of the periodical
95
Issue of the periodical within the volume
5
Country of publishing house
AT - AUSTRIA
Number of pages
17
Pages from-to
355-371
UT code for WoS article
—
EID of the result in the Scopus database
—