On stability regions of the modified midpoint method for a linear delay differential equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F13%3APU103804" target="_blank" >RIV/00216305:26210/13:PU103804 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1186/1687-1847-2013-177" target="_blank" >http://dx.doi.org/10.1186/1687-1847-2013-177</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/1687-1847-2013-177" target="_blank" >10.1186/1687-1847-2013-177</a>
Alternative languages
Result language
angličtina
Original language name
On stability regions of the modified midpoint method for a linear delay differential equation
Original language description
The paper deals with stability regions of certain discretization of linear differential equation with constant delay. The main aim of the paper is to analyze regions of asymptotic stability of modified midpoint method applied to a linear differential equation with constant delay. Obtained results are compared with other known results, particularly for Euler discretization. There is discussed a relation between asymptotic stability conditions in the discrete case and continuous case, too.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0768" target="_blank" >GAP201/11/0768: Qualitative properties of solutions of differential equations and their applications</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Difference Equations
ISSN
1687-1847
e-ISSN
—
Volume of the periodical
2013
Issue of the periodical within the volume
177
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
1-10
UT code for WoS article
000322824100001
EID of the result in the Scopus database
—