All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

GEOMETRY OF ALMOST CLIFFORDIAN MANIFOLDS: NIJENHUIS TENSOR

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F13%3APU106186" target="_blank" >RIV/00216305:26210/13:PU106186 - isvavai.cz</a>

  • Result on the web

    <a href="http://mat76.mat.uni-miskolc.hu/~mnotes/storage/volume_14_2/hrdina.pdf" target="_blank" >http://mat76.mat.uni-miskolc.hu/~mnotes/storage/volume_14_2/hrdina.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    čeština

  • Original language name

    GEOMETRY OF ALMOST CLIFFORDIAN MANIFOLDS: NIJENHUIS TENSOR

  • Original language description

    We generalize some classical results on Nijenhuis tensor for an almost Cliffordian manifold based on arbitrary Clifford algebra and suggest its relations with the integrability of the corresponding G -structure. We prove the set of properties for Nijenhus tensors with respect to arbitrary Clifford algebra.

  • Czech name

    GEOMETRY OF ALMOST CLIFFORDIAN MANIFOLDS: NIJENHUIS TENSOR

  • Czech description

    We generalize some classical results on Nijenhuis tensor for an almost Cliffordian manifold based on arbitrary Clifford algebra and suggest its relations with the integrability of the corresponding G -structure. We prove the set of properties for Nijenhus tensors with respect to arbitrary Clifford algebra.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Miskolc Mathematical Notes

  • ISSN

    1787-2405

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    7

  • Pages from-to

    583-589

  • UT code for WoS article

  • EID of the result in the Scopus database