All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-Wavelength Eclipse Observations of a Quiescent Prominence Multi-Wavelength Eclipse Observations of a Quiescent Prominence Multi-Wavelength Eclipse Observations of a Quiescent Prominence

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F14%3APU109115" target="_blank" >RIV/00216305:26210/14:PU109115 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s11207-014-0482-1" target="_blank" >http://dx.doi.org/10.1007/s11207-014-0482-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11207-014-0482-1" target="_blank" >10.1007/s11207-014-0482-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-Wavelength Eclipse Observations of a Quiescent Prominence Multi-Wavelength Eclipse Observations of a Quiescent Prominence Multi-Wavelength Eclipse Observations of a Quiescent Prominence

  • Original language description

    We construct the maps of temperatures, geometrical thicknesses, electron densities and gas pressures in a quiescent prominence. For this we use the RGB signal of the prominence visible-light emission detected during the total solar eclipse of 1 August 2008 in Mongolia and quasi-simultaneous H alpha spectra taken at OndA (TM) ejov Observatory. The method of disentangling the electron density and geometrical (effective) thickness was described by Jeji and Heinzel (Solar Phys. 254, 89 -aEuro parts per thousand 100, 2009) and is used here for the first time to analyse the spatial variations of prominence parameters. For the studied prominence we obtained the following range of parameters: temperature 6000 -aEuro parts per thousand 15 000 K, effective thickness 200 -aEuro parts per thousand 15000 km, electron density 5x10(9) -aEuro parts per thousand 10(11) cm(-3) and gas pressure 0.02 -aEuro parts per thousand 0.2 dyn cm(-2) (assuming a fixed ionisation degree n (p)/n (H)=0.5). The electron density increases towards the bottom of the prominence, which we explain by an enhanced photoionisation due to the incident solar radiation. To confirm this, we construct a two-dimensional radiative-transfer model with realistic prominence illumination.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Solar Physics

  • ISSN

    0038-0938

  • e-ISSN

    1573-093X

  • Volume of the periodical

    2014 (289)

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    14

  • Pages from-to

    2487-2501

  • UT code for WoS article

    000334201400006

  • EID of the result in the Scopus database

    2-s2.0-84897570219