Energy considerations in spraying process of a spill-return pressure-swirl atomizer
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F14%3APU109889" target="_blank" >RIV/00216305:26210/14:PU109889 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0306261914007247" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0306261914007247</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apenergy.2014.07.042" target="_blank" >10.1016/j.apenergy.2014.07.042</a>
Alternative languages
Result language
angličtina
Original language name
Energy considerations in spraying process of a spill-return pressure-swirl atomizer
Original language description
The work focuses on energy conversion during the internal flow, discharge and formation of the spray from a pressure-swirl (PS) atomizer in the simplex as well as spill-return mode. Individual energy forms are described in general and assessed experimentally for a particular PS atomizer and light heating oil as a medium. The PS spray was observed at various loads to investigate the liquid breakup process and the spray characteristics. Spatially resolved diameters and droplet velocities, measured by means of phase-Doppler anemometry, served for estimation of the energy characteristics in the PS spray. The input energy given by the potential energy of the supplied liquid partially converts into the kinetic energy (KE) in the swirling ports with hydraulic loss in per cent scale. Most of the pressure drop is associated with rotational motion in the swirl chamber with total conversion efficiency at the exit orifice 58%. The rest of the input energy ends up as friction loss, leaving room for improvement. The overall value (ID32) of the Sauter mean diameter of droplets in the spray, D32, varies with pressure drop dpl powered to –0.1. The radial profiles of D32 widen with the increase in spill/feed ratio (SFR), but the ID32 remain almost constant within the studied SFR range. The spray KE at closed spill line covers the droplet KE (21–26%) and that of entrained air (10–13%), both moderately varying with dpl. The specific KEs of both the liquid and air markedly drop down with the spill line opening. Atomization efficiency is less than 0.3% for the studied range of operation regimes and depends on dpl and SFR. Our results confirm low power demand of simplex PS atomizers, with extra energy consumption in spill mode. Several recommendations are given for PS atomizer innovations and development of new, more efficient, designs meeting more stringent environmental requirements.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED ENERGY
ISSN
0306-2619
e-ISSN
1872-9118
Volume of the periodical
132
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
485-495
UT code for WoS article
000342247400046
EID of the result in the Scopus database
2-s2.0-84905256077