All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Computational modelling of cavitation in simple geometries, but complex flows

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F14%3APU111795" target="_blank" >RIV/00216305:26210/14:PU111795 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Computational modelling of cavitation in simple geometries, but complex flows

  • Original language description

    Cavitation occurs when local pressure in flowing liquid drops below saturated vapor pressure. If the resulting vapor bubbles are transported to regions of higher pressure then sudden condensation follows, which is accompanied by emission of pressure andacoustic waves. Above described process leads to cavitation erosion and consequently to shorter service time of the hydraulic machines. Cavitation can be modeled by current CFD tools with simplified cavitation models. Computational simulations revealed that proper capturing of the underlying one-phase flow field is crucial to obtain correct vorticity distribution. Clouds filled with vapor are born from regions of concentrated vorticity and shed downstream. Only advanced turbulence models (Reynolds Stress Model, Scale Adaptive Simulation) are able to predict vorticity field and development of the unsteady swirling flow. Increased vorticity generation in two-phase flows is caused by additional term in vorticity equation - baroclinic torqu

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JE - Non-nuclear power engineering, energy consumption and utilization

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-23550S" target="_blank" >GA13-23550S: Experimental research and mathematical modelling of unsteady phenomena induced by hydrodynamic cavitation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computational mechanics 2014; book of extended abstracts

  • ISBN

    978-80-261-0429-2

  • ISSN

  • e-ISSN

  • Number of pages

    2

  • Pages from-to

    1-2

  • Publisher name

    FAV ZČU Plzeň

  • Place of publication

    Plzeň

  • Event location

    špičák

  • Event date

    Nov 3, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article